Table of Contents generated with DocToc
Softmax Regressions
完整的代码如下:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import tensorflow as tf
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
# cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) # learning rate = 0.5
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in xrange(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})
# Output: 0.9192
以上代码仅仅只有一层隐层神经元,然后就连上softmax,十分简单的结构。
tensorflow的后台底层(backend)是用C++写的,连接backend的叫做Session
。所以从上面的代码也可以看出整个代码分为两个部分,前一部分构建graph,后一部分就是创建一个Session
来连接这个graph,并运行它。也就是说,tensorflow在计算反向传播等一系列深度学习的操作的时候,都是用C++在跑,而python的作用是构建外壳,也就是graph,来调用这个C++核心,实现交互。
文档里建议使用InteractiveSession
,而不是之前的Session
,说InteractiveSession
的好处是更加灵活,可以交错的构建computation graph,有点像IPython,如果使用Session
,则需要构建完整的graph。 这段话我不太理解,仅从上面这段代码来看,InteractiveSession
也是构建了完整的graph,跟Session
好像并无太大区别,唯一我发现的区别就是使用feed_dict
来传参。
假如使用Session
来操作,上面的部分代码改为如下:
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
for _ in xrange(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, {x: batch_xs, y_:batch_ys})
更深层次的区别有待我继续探索。
还有一个小点,就是文档建议使用官方给出的函数tf.nn.softmax_cross_entropy_with_logits
来计算cross-entropy,而不是自己写(就是被注释掉的那一句).
Build a Multilayer Convolutional Network
简单的一层隐层网络能达到近似92%的精确度,现在使用多层卷积网络可以达到99.2%的精确度。 代码如下:
# Weight Initialization
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# Convolution and Pooling
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# First Convolutional Layer
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# Second Convolutional Layer
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# Densely Connected Layer
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# Dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Readout Layer
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
# Train and Evaluate the Model
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.global_variables_initializer())
for i in range(5000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print("test accuracy %g"%accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
上面代码的训练循环次数,改为20000次,可以达到99.2%,5000次大概只有98.6%的准确率。
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)
Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter / kernel tensor of shape [filter_height, filter_width, in_channels, out_channels]
。
padding='SAME'
:out_height = ceil(float(in_height) / float(strides[1])) out_width = ceil(float(in_width) / float(strides[2]))
padding='VALID'
:
Referenceout_height = ceil(float(in_height - filter_height + 1) / float(strides[1])) out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))
- Tensorflo文档
- StackOverflow关于
tf.nn.conv2d
的理解的提问