如何根据某一列的值来选择pandas的某些行?

select rows whose column value equals a scalar, some_value, use ==

df.loc[df['column_name'] == some_value]

select rows whose column value is in an iterable, some_values, use isin:

df.loc[df['column_name'].isin(some_values)]

Combine multiple conditions with &:

df.loc[(df['column_name'] == some_value) & df['other_column'].isin(some_values)]

select rows whose column value does not equal some_value, use !=:

df.loc[df['column_name'] != some_value]

isin returns a boolean Series, so to select rows whose value is not in some_values, negate the boolean Series using ~:

df.loc[~df['column_name'].isin(some_values)]

举例见StackOverflow

results matching ""

    No results matching ""